Design of a reconfigurable
autoencoder neural network
for detector front-end ASICs

CPAD 2021 - March 19, 2021

Columbia University : Giuseppe Di Guglielmo, Luca Carloni

Fermilab : Farah Fahim, Cristian Gingu, Christian Herwig, Jim Hirschauer,
Martin Kwok, Nhan Tran

Florida Tech : Danny Noonan

Northwestern University : Manuel Valentin, Yingyi Luo, Seda Memik




With thanks to the CMS Collaboration,
and in particular,
the CMS High-Granularity Calorimeter Group
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Thanks also to

£¥: FAST MACHINE LEARNING LAB

https://fastmachinelearning.org/

2020 Fast ML for Science workshop:
https://indico.cern.ch/event/924283/

Please join the next workshop :
tentatively end-of-2021 / early-2022
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Motivation and introduction

(Higher luminosity = higher occupancy = higher detector granularity = higher data ratD
e Data challenge for trigger path most severe = 40 MHz at HL-LHC
e Traditionally, on-detector electronics are kept as simple as possible.

e Data challenge > complex data processing must move to on-detector electronics
k e object reconstruction (tracks, jets), object selection, data compression J

(This talk: Neural Network (NN) autoencoder in ASIC for on-detector data compressio.\
e Design based on requirements for the CMS High-Granularity Calorimeter (HGCAL).

o Key features of design :
e low power, low latency, radiation tolerant (200 Mrad, 1x107 20MeV-hadrons/cmz2/s)

e customize the compression algorithm based on location within the detector
e adapt the compression algorithm for changing detector and beam conditions

\_ J




HL-LHC Data Challenge

Configurable on-detector
data compression with
machine learning

L1 Trigger:

all-FPGA
filter stack Fast validation and

processing stack

CMS Detector

~10s Tb/s

~100 Gb/s y g
—) |

High level trigger: Wofiide
filter farm computing grid
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Autoencoder concept
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CMS High Granularity Calorimeter (HGCAL)

e "Imaging calorimeter” with ~6M readout Absorbed Dose at 3000 fb™’
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e 50 layers of active material + absorber.
e Front layers tiled with 300-500 8"
hexagonal silicon modules.

200

e HGCROC ASIC : digitizes charge and
arrival time and provides charge data for
trigger path.

100

e ECON ASIC selects/compresses digital >0

trigger data for transmission off-detector.
e NN Encoder to be included in ECON. 0
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HGCAL trigger data challenge

i Number bits/ Average - # links*
UIIEen Balin S channels channel Compression factor pataare (10.24 Gbps)
Raw data 6M 20 1 5 Pb/s 1M
Hardware reduction 1M 7 1 300 Tb/s 60k
Threshold selection 1M 7 7 40 Tb/s 9k

* Assumes 40 MHz rate and 50% link packing efficiency

e Baseline HGCAL design for trigger selection in ECON : threshold algorithm in
ECON selects trigger cells with charge exceeding a threshold.

HGCAL 8" hex module

&L

w @

432 silicon sensors = 48 Traditional threshold algorithm : 3 of 48 TC readout
trigger cells (TC) @ 7b per TC for most of detector (2 x 1.28G elink per module)
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Encoder design considerations

e Minimize : power (< 100 mW) + area (< 4 mm?2) + latency (< 100 ns)
e Maximize : physics performance + configurability + radiation tolerance

e Network architecture and precision of weights and biases: fixed in design

e Fully re-configurable : all network weights and biases + dimensionality of output

Inputs

48 X 7b =
336 bits
@ 40 MHz

ECON
block
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floating
point
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Encoder
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Convertor
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normalized
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Encoder NN
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weights,
biases

~

Outputs

48-144 bits

= @ 40 MHz



Encoder NN design considerations

Encoder NN components

e Convolutional layer (conv2D): extract geometric features

e Flatten layer : vectorizes 2D image from conv2D (128 = 8 X 4 X 4)
e Dense layer : decide which geometric features are important

e RelLU : activation function

Encoder NN

Convolutional layer

8 filters

\_

RelLU

(Optimization of dimensions shown next

Flatten
layer

Dense
layer

e 2

=23

128
features

16
outputs

RelLU

e 2

~

Outputs

16
outputs
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3-9
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output

S
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Encoder NN architecture optimization

e Optimize encoder network architecture choices including :
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Performance metric : EMD

e Judge network performance according to image similarity.

e Energy Mover's Distance : quantify the cost of transforming one image into
another as energy X distance.

e For each NN variation : train network and evaluate with simulated physics events
including top quarks (jets, leptons) and 200 pileup.

arXiv:1902.02346
Komiske, Metodiev, Thaler
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Physics driven hardware co-design

Rapid prototyping and optimization of network achieved through

e QKeras : network development with quantization-aware training and physics simulation
e hls4ml : neural network description (h5 file e.g.) > HLS-compliant C++ format

e Catapult HLS : C++ = RTL

e TMR4sv_hls : Automated TMR for System Verilog

ALGORITHM ~ *\ e hlsdml sumpllf_les the design of ML gcce_lerators
o | hls4ml directives | << | HLS directives |
DEVELOPMENT ) , ~. o
- ML Model o C++ library of ML functionalities optimized for HLS
&;Trairl\ing *
ll::::‘3:«15'3‘:t<>r é d
e his 4 ml Encoder
_ —a HLS
\/ void foo(int A[10], . . TMR4SV hls
% [ it (01, ac craon Directives -
hlsd4ml &« B2 5T 4 <o s ¢ Doy,
DireCtiveS . iz- o (i< 10:- i) ( l = Wi_— -
AR ewm \[ HLS ] TP,
Perf \_,/ RTL
eriormance C++ T Hardware GDSIl
Specification ~ Technology Library Implementation(s)

13



Rapid design optimization

e Power and area : roughly scale with number of model operations and parameters
e Performance : EMD mean and RMS are both important

Lower EMD is better

Network Architecture Relative Power & Area Relative Performance
Test feature | Geometry | # filter |kernel| stride| pooling | # params [# operations | EMD Mean| EMD RMS
Reference 4x4x3 8 3x3 1 none 1.00 1.00 1.00 1.00
4x4x3 -> 8x8 8x8 8 3x3 1 none 2.73 1.76% 0.64 0.41
max pooling 8x8 8 3x3 1 2x2 0.71 0.97* 0.59 0.33
3x3 -> 5x5 kemel 8x8 8 5x5 1 2X2 0.99 2.76 0.64 0.35

I Eooliné -> stride=2 8x8 8 3x3 2 none 0.94 0.59 0.76 0.46 ||

8 -> 10 filters 8x8 10 3x3 2 none 1.17 0.73 0.73 0.43
8 -> 6 filters 8x8 6 3x3 2 none 0.70 0.44 0.85 0.57

* zero operations removed

e Reference design : presented in Fall 2020**

e Final design : 8x8 geometry + 8 filters + 3x3 kernel + stride =2

e 50% power and 80% area of reference (from simulation)

H

o 2x better performance (EMD RMS) than reference J

———— ———— E— E—

** https://indico.cern.ch/event/924283/contributions/4105329/attachments/2152250/3630590/encoder_asic_fastmI2020.pdf
https://www.eventclass.org/contxt_ieee2020/online-program/session?s=N-34#e280

https://www.eventclass.org/contxt_ieee2020/online-program/session?s=N-24#e189
| 4



Optimization of NN output

e Better to use many low-precision or fewer high-precision outputs?
e Compare EMD performance keeping power and area fixed.
e Conclusion : more lower-precision outputs is better

e for both high- and low-bandwidth scenarios

e for full range of module occupancy

ECON ASIC allows user to select any 437 Total module output # NN outputs
of 16x9 output bits for transmission 4.0 - bandwidth
' — 6
—|— 2 X 1.28 Gbps
e Expect to use 16 x 3 (9) bits for low 3.5 - P w10
. -== 5 X 1.28 Gbps
(high) occupancy zones. — 16
5 3:0-
o
e Corresponding precision used in 2.5 - ‘
QKeras quantization-aware 504 - 2’\ |
training optimizes network for NS o
programmed output configuration. 1.5 1 \========= ____
¢ lower EMD better TS SSS=zsaao..
1.0 _I T T T T
0 5 10 15 20

|5 Occupancy [1 MIP+ cells]



Single event effect mitigation

Data path :
Encoder & Convertor

Configuration : 12C secondary
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e New data every 25ns e Long term weights storage
e Triplicate registers e Triplicate registers, logic, and clocks
e No auto-correction e Auto-correction included



Design and
verification
methodology

Verification performed at
each stage of design:

e Model training

e hls4ml

Catapult HLS

e RTL

e Synthesis

Place and route
LVS and DRC

TF/Keras/QKeras
Model

Model Training

:

[hls4ml]
I

System Level Design

Static Analysis

/' [ for Design Rules

C++ Design

J
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[ High-Level Synthesis ] C-RTL cosimulation
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Coverage

J

Register Transfer Level[ Code Coverage ]

RTL Design

RTL
simulation

Place and
Route

Gate level
simulation

Post signoff
simulation

C-
simulation
| Code Coverage I

(Block, Toggle, fsm)

Post signoff simulation
with parasitics

Design IP block
Design Rule Check / Electrical
Rule Check/ Design for

Manufacture



Design and verification
methodology

Step Type | Run Time | Iterations Size
Model generation D 1s 50-100 1.1k lines of Net_wo_rk _
C Simulation V 1s B C++ optimization
HLS D 30 min 3100 | 4Ok lines of | Design
RTL simulation V 1 min verilog optimization
Logic synthesis D 6 hrs

_ _ 750k gates
Gate-level sim Vv 30 min
Place and route D 50 hrs _ _

_ 6 Increasing time

Post-layout sim Vv 1 hrs 780Kk gates and complexity
Post-layout parasitic sim \Y 2 hrs
SEE simulation \Y 4 hrs
Layout D 20 min ] 7. 6M
LVS and DRC V 1 hr transistors




Place and route

e Integrated design to avoid routing congestion from 14k bits of
weights (programmable via I12C) connected from periphery.
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Design Performance Metrics

Physics performance studies in progress =

preliminary performance with non-
optimized training comparable to
traditional threshold algorithm.

Requirements

Rate

40 MHz

Total ionizing dose

200 Mrad

High energy hadron flux

1 X 107cm?/s

Metric Simulation Target
Power 48 mW <100 mW
Energy / inference 1.2 nJ N/A
Area 2.88 mm?2 <4 mm?2
Gates 780k N/A
Latency 50 ns <100 ns
* EMD RMS 20




Summary

e Autoencoder neural network for on-detector data compression.
e Low power, low latency, radiation tolerant, fully re-configurable
e 65nm LP CMOS

o Established design and verification methodology based on hls4ml +
Catapult HLS allows rapid progression from algorithm development through

circuit implementation.

e Optimized network provides 2x better performance at ~50% power of
reference network.
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Additional material
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OPTIMIZATION TECHNIQUES

Future : towards heterogenous
intelligent system on-chip

11l
- - MIXED ANALOG-
DOMAIN SPECIFIC COMPILER - :-l_—' - DIGITAL
Resource Tuning - - COMPUTE
odel raning «ll Iy 1 FPGAs ]
F mKeras 1111

PYTORCH
_) . DIGITAL IMPLEMENTATION

MdID sign Model Pruning hls-ml
& i

PHOTONIC IMPLEMENTATION IN-MEMORY
COMPUTE

OPTO-ELECTRONIC COMPUTE

e Analog Mixed-Signal Kernels

e In-memory compute e.g. with using memristors (non-Von Neumann approaches)
e Neuromorphic computing (event driven processing)

e Electronic-Photonic conversion

e Hybrid integration
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Precision of weights and variables

(3,4,4)@22b
1052b

e Diagram is example for 4x4x3
reference network - same structure
as final 8 x8 network

e Weights are all 6b

For final 8 x8 network:

e hidden layer neurons:

e 8b fraction

e sufficient integer bits to cover
theoretical max value

e output neurons:
e 9b total
e 1b integer

e covers maximum value from
physics simulation
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